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New Output Feedback Design in Variable Structure Systems

Wen-June Wang* and Yang-Ta Fanf
Institute of Computer Science and Electronic Engineering, National Central University,
Chung Li, 320, Taiwan, Republic of China

This paper proposes an output feedback variable structure control to stabilize a class of uncertain systems in
which the state is unavailable and no estimated state is required. The special sliding hyperplane is introduced so
that the output of the sysfem is mmally on the hyperplane no matter where the initial output is, and the stability
of the equivalent reduced-order system in the sliding mode is assured under a certain condition. Further, based
on the concept of the equivalent motion and the known bound of the initial state, the constant control gain is
derived to guarantee the existence of the sliding mode. Finally, an aircraft model is given to illustrate this design

approach.

I. Introduction

ARIABLE structure systems (VSS) are a special class of

nonlinear systems characterized by a discontinuous. control
action which changes the system structure on the state reaching the
sliding (switchirig) hyperplane. The major merit of the VSS is their
insensitivity to parameter variations and external disturbances.!-?
Hence, over the last few years, the VSS approach has been widely
applied to the design of practical control systems, such as servo
systems,> power systems,®’ flight control systems,® etc. How-
ever, the conventional VSS are always limited to the systems with
full-state feedback. In fact, in practical application, full measure-
ment of state might be neither possible nor feasible. Recently,
some asymptotic observers and dynamic compensators have been
used in VSS to deal with the unavailability of state,!! even
though they possibly increase the complexity of the system. There-
fore, the direct output feedback design in VSS is worth investigat-
ing. Up to now, there has been very little relevant literature
addressing this subject. Heck and Ferri'? proposed a direct output
feedback in VSS by choosing a matrix N such that the nominal
system satisfies the reaching condition; nevertheless, the existence
of the matrix N is not guaranteed.

In this paper, we proposed a direct output feedback variable
structure control to stabilize the uncertain system robustly. Here
the state is unavailable and no estimated state is required. The
main idea is to choose a special set of switching functions and
place the system on the sliding hyperplane at the initial instant;
thereafter, the existence condition of the sliding mode must be
guaranteed. With the aid of the known bound of the initial state
and the concept of the equivalent motion, the constant control gain
is derived to ensure the existence of the sliding mode.

The organization of this paper is as follows: In Sec. Il we formu-
late the system and state the problem. The main results are derived
in Sec. I1I. In Sec. IV an illustrated example is given. A conclusion
is given in the last section.

II. System Formulation and Problem Statement
Consider a class of uncertain systems described as

= (A+AA)X+Bu (1a)
= Cx (1b)
AA = BD (Ie)
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where the state vector X € R”, and the control input u € R”, and
the output vector y e R, for m<p<n. (A, B) is a completely
controliable pair with appropriate dimensions. Moreover, the
matrix A represents the nominal linear part of the system, B is the
input matrix of full rank and AA is a matrix involving all possible
system parameter variations satisfying the matching condition Eq.
(c). Let Eq. (1) be transformed as follows!314:

n—m

X -
x = YMx, xR

X

and x,e R”

(€))

where M is an n X n orthogonal transformation matrix such that

3)

where B, € R"™™ isa nonsingular matrix. Then Eq. (1) can be

written as
%= (A+AA)x+Bu (4a)
y = Cx (4b)
where
A = MAM*I All A12
A21 A22
AA = MAAM™ = BD,D = DM (4c)
C=CM'=1[C, CJ, C,eR”*"™ and C,eR"

in which we assume that the uncertainty matrix D has the follow-
ing bound
IDll,<d (4d)
where [|D||, denotes the spectral norm of matrix D and d is a posi-
tive scalar. In the following, without loss of generality, our analysis
and design are on the basis of the transformed equivalent system
Eq. (4).
Our main objective is to design an output feedback control such
that the system in Eq. (4) is stabilized robustly. The components of
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the control vector u € R” are of variable structure form, i.e.,

u () if s, (y) >0
w= 3 _ , i=1,2,...,m (5a)
u; (y) if s (») <0

where
s;(») =g, ly®-exp(-B,Hy(0)], geR*"  (5b)

is the ith switching function, each [, is a positive scalar, and y(0) is
the initial output. For simplicity, choosing B, =...=f,, =p>0.
Let us define a matrix G € R™*?; each row of matrix Gis g;, i =1,
2,...,m, which will be determined later. The sliding mode occurs
when the output reaches and remains on the intersection of the m
switching functions 5;=0,i=1,2,...,m, i.e.,!’

SO)=[s1,-...5n)" = Gy — exp(—BNy(0)] =0 (6)

S() = 0 is so called the “sliding hyperplane”. S[y(0)] = 0 means
that the system is placed on the sliding hyperplane initially no mat-
ter where y(0) is. Besides, the exponential term exp(-B#)y(0) will
decay to zero as ¢ — oo, and its effect will be discussed later. Here
we assume GC,, and GCB are both nonsingular matrices.

III. Main Result

The design procedure can be divided into two steps as follows.

A. Sliding Hyperplane Determination
While in the sliding mode, i.e., S = 0, a certain linear depen-
dence among the state is as below

X, = —(GCy) L GCx; + (GCp)~1Gy(0)exp(—Pt) (72)

thus the system in Eq.(4) can be reduced to the following n-m
dimensional form

X = 1Ay — Ap(GCY ™' GC\)xy + A (GCy) ™' Gy (O)exp(—B1)

(7b)

and
t 1
@ = [0 2 PN EA0)
X,(2) -(GC,) GC,
+ . exp(—pp (Tc)
—-(GC,) Gy(0)
where Te R"™™* "™ is an identity matrix. For convenience,

the following notations are used in the sequel of this paper:

A,

A” - A12(GC2)_1 GCI (83)

90 = A1o(GC) ™' Gy(O)exp(=Bo) (8b)

and

H= I e RV (8¢)
-(Gc,y)~'Ge,

The sliding hyperplane S(y) = 0 is determined by choosing the
matrix G to stabilize the reduced-order system in the sliding mode.
Neglecting the exponential term ¢ first, Eq. (7b) can be seen as a
usual linear output feedback problem

X =[Ay — ApKCilx, )]

where K = (GC,)~ 1G. The following lemma is needed.

Lemma 1'% 16 For a matrix C,e R"*", there exists a
matrix G € R” ™ such that K = (GC2) IG in Eq. (9) can achieve
some poles placement if and only if

rank[C,K — I1<p — m (10)

That is, if Eq. (10) holds, we can select X to stabilize the system in
Eq. (9) first, and there exists a suitable G to satisfy G(C,K — I) =0.
Here the solution G may not be unique.

Remark 1: 1t is noted that the exponential term ¢ will decay to
zero as ¢ — oo, hence it will not affect the equilibrium point of the
system Eq. (7b). That is, the sliding hyperplane in Eq. (6) will con-
verge to the following form:

limS(®) = limS(@) = Gy
£ 00 ¢—0

so the preceding determination of the matrix G by neglecting ¢ is
reasonable. Besides, the response prior to this convergence might
be not very good. The decay rate of ¢ can be speeded up by
increasing the value of B, however, the control gain will increase
too.

B. Existence Condition Satisfaction

It is well-known that the output can globally reach the sliding
hyperplane if!?

ST3)S») <0 (11a)

Because the system is on the sliding hyperplane initially, we only
need to consider the existence condition of the sliding hyper-
plane, i.e.,

lim § TS <0 (11b)

To achieve the existence condition in Eq. (11b), the following
approach is helpful.

Control Selection: For the given system in Eq. (4) with known
bound of initial state x(0), let the control u(y) be selected as

u(y) = —k(GCB)'sgn(S) (12)
where sgn(S) = [sgn(s)), ... ,sgn(s,)]7, each sgn(s;) is a signum
function of 5;, i=1,2,...,m, defined as sgn(s;) = 1 for s;> 0, O for

5; =0, —1 for s; < 0. Let the constant control gain k € R satisfy
the following inequality

kzmax [ (IGCA|, +IGCll,lAAlL) L +BIGyO)ll,]  (13)

where max(*) represents the maximum value of () and L is
defined as
}2

+|@Gcyy Gy, (14)

L =|1Huzﬁlexp_[ﬁ,(t> 1a1x @), +| | exp[Az—1) Jo(z)de
0

for t 2 0, then Eq. (11b) holds, i.e., the existence condition is guar-
anteed.

Reason: Substituting Eq. (12) into Eq. (4a) and differentiating
Eq. (5b), it yields

§ = GCAx + GCAAx + k sgn(S) + Bexp(—BHGy(0)  (15)
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It is easy to see, if
k2 max [ (IGCAl, + IGCI, A Al Ix @], + BIGyO),] (16)

then the existence condition Eq. (11b) can hold. However, x(¢) in
Eq. (16) is not available, hence Eq. (16) should be modified as fol-
lows.

Because at the initial instant S y(0)] =0, i.e., the initial output is
on the sliding hyperplane. From the concept of the equivalent
motion, while in the sliding mode, we have the reduced-order sys-
tem as follows with the aid of Egs. (8a) and (8b)

x] = Al)ﬁ +¢ (17)
S(» =0
with the initial state x(0). Solving Eq. (17), we get
t

x,(1) = exp [A((2) 1 x,(0) + J exp[A(1-1) Jo(1) dT  (18)

0
For a stable matrix A; and finite vector ¢, it is clear that both

”exp [A(D) ]" 2 and ”J(’)exp[f{l(t -1) Jo(t)dt 12 are limited tosome
bounded values. The upper bound of the state vector x;(?) is

||, <lexp [A: (1], 12O, +

J. exp [A(t 1) 1o(t)dt
0

2
(19)

Further, by Eqgs. (7c) and (8c), the upper bound of the state vector
x(f) is

@l = | K@, S0 |, <1, @l + | Gy oo,
20)

Substituting Eq. (19) into Eq. (20) and according to Eq. (16), Eqgs.
(13) and (14) are obtained.

Remark 2: 1t is noted that because y(0) lies on the sliding hyper-
plane S = 0 initially, the control « in Eq. (12) with the gain & in Eq.
(13) is chosen to force y(f), for t = 0 + At, 0 < At < 1, remaining
on § = 0; moreover, each term of right-hand side of Eq. (13) is
taken to be norm value and the maximum value of it is considered.
Therefore, we can conclude that Eq. (13) indeed gives a strong
enough gain & such that y(#), ¢ = 0, will be kept lying on the sliding
hyperplane all the way. Consequently, the control selection is
indeed workable.

Remark 3: Because the control u in Eq. (12) may give rise to
chattering due to the term of signum vector sgn(S), directly apply-
ing such a control signal to the plant may be impractical. To obtain
a continuous approximation control signal, each element of sgn(S)
can be replaced by a smoothing continuous function as!”

M,(S) = i=1,....m @1)

S;
INEX

where each §; > 0 is a small positive constant. Because our control
design only considers the existence condition of the sliding mode,
the output trajectory should be confined to the neighborhood of the
sliding hyperplane, so §; cannot be too large, i =1, 2, ... ,m. How-
ever, how to choose a set of suitable §; is still an open problem.

IV. Illustrative Example

It is difficult to find a practical example with multi-input sys-
tem. Therefore, for convenience, we adopt the system of aircraft in
Ref. 12 to be illustrated.

o -0277 1 -0.0002| | 0
gl = {-17.1 -0.178 -122 {(gq|+| O |u (22a)

S, 0 0 —6.67 |9, 6.67
o
y = N -1010 q (22b)
¥, 001 5

where o is the attack angle, ¢ is the pitch rate, 8, is the elevator
angle, u is the command to the elevator, and y is the measurement

2 —
Pitch rate, q: solid-line
1.5+ Elevator angle, §,: dashed-line |
1+ 4
0.5+
o o\
-0.5- \-\/
Time (sec)
-1 . . .
0 0.5 1 1.5 2 2.5 3
Fig.1 Output trajectory ¢ and 9,.
0.3
. Control, u: dashed-line
0.2} Sliding hyperplane, S: solid-line
o}t |
0 (I‘,‘/\«
._0_1 - i ’ -
-0.2t 1
-0.3} 4
Time (sec)
-0.4 . - .
0 0.5 1 1.5 2 2.5 3
Fig. 2 Control « and the sliding hyperplane S(y).
0.2
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0.1F \-
oF k
-0.1F 4

-0.2F / i
-0.3} . i
Z/ Pitch rate, q

-1 -0.5 0 0.5 1 1.5 2

Fig. 3 Phase plane of output ¢ and J,.
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2.5

Sliding hyperplane, S(»)

o.sr ]

Time (sec)

0 .0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 4 The S(y) of the “Example” in Ref. 12 with x(0) =[1 0 1}’
vector. It is obvious that system Egs. (22a) and (22b) is controlla-
ble. Suppose the uncertainty is illustrated as

D =0.1[sin(?) + cos(21) sin(3f)cos() — 1+ sin(2f)cos(31)] (23)
From Eq. (23), |D|, < 0.2235, and |A A}, < 1.4910. Hence we

need not transform the system since the matrix B is of the form in
Eq. 3). Define x; = [o ¢]7 and x, = §,, then

0277 1 —-0.0002
A, = , A, = Ay =
" [—17.1 —0.178} 2 { -12.2} n=[og

[-6.67], B, = [667), C, = [0 1], c, = H
00

A21

Let K = [ky, k,]. According to lemma 1, it must satisfy

rank| 0 | <1 (24)
k, ky—1

i.e., k, = 1. Hence only k; can affect the stability of the reduced-
order system in the sliding mode. Suppose we choose K =
[—0.4635 1] to place the elgenvalues at A, = —3.06+3.06/,/
= /=1 .Because K = (GC,)~'G, it follows that G =[—0.4635 1].
Let B = 3 and y(0)=[2 O]7, then from Eq. (6), the sliding hyper-
plane is

S(y)=—0.4635y, +y, — 2exp(—3H)=0 25)
Suppose we merely know the bound of the initial state [x (0) ||, =2.

From Eq. (20), the upper bound |x (£ ]|, = 5.3160, and from Eq.
(13), k 249.6299. If we let k = 50, from Eq. (12), we have

u(y) = —7.5 sgn(S) 26)

Owing to remark 3, the sgn(S) in Eq. (26) can be replaced by Eq.
(21) with a small §, e.g., 8 = 0.5. The simulation results are shown
in Figs. 1,2, and 3, respectively. It is clear that a good approxima-
tion causes the perfect sliding motion and the chattering phenom-
ena is eliminated.

Here, we have to mention that in the example of Ref. 12 the
authors give N =0 to yield

0 0 0
-3.6736 -0.0382 0.4706
7.9259  0.0825 -1.0153

c'¢"Gea =

which is not negative semidefinite. Therefore, the S(y) trajectory
with initial state x(0) = [1 0 1]7 does not decrease, i.e., the reaching
condition Eq. (11a) fails during a certain period of time (see Fig. 4).

V. Conclusion

If some state is unavailable and no estimated state is employed,
the output feedback design in variable structure systems is difficult
work. The global reaching condition is especially hard to meet.
This paper has introduced a new design on the sliding hyperplane,
such that the system is on the hyperplane initially. Therefore, only
the existence condition of the hyperplane must be considered.
Based on the concept of the equivalent motion, the constant con-
trol gain is obtained by an off-line computation with the known
bound of the initial state.
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